Gaussian mixture model (GMM)
Gaussian Mixture Models are a type of probabilistic model used to represent complex data distributions by combining multiple Gaussian distributions.
The procedure is as follows:
- Step 1: Generate a mixture component among \(\{1, 2, \ldots, K\}\) where \(z_i \in \{1, 2, \ldots, K\}\). We obtain, \[ P(z_i=k) = \pi_k \hspace{2em} \left [ \sum _{i=1} ^K \pi_i = 1 \hspace{1em} 0 \le \pi_i \le 1 \hspace{1em} \forall i \right ] \]
- Step 2: Generate \(\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_{z_i}, \boldsymbol{\sigma}^2_{z_i})\)
Hence, there are \(3K\) parameters. However, since \(\displaystyle \sum _{i=1} ^K \pi_i = 1\), the number of parameters to be estimated becomes \(3K-1\) for a GMM with \(K\) components.
Likelihood of GMM’s
\[\begin{align*} \mathcal{L}\left( \begin{array}{cccc} \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \ldots, \boldsymbol{\mu}_K \\ \boldsymbol{\sigma}^2_1, \boldsymbol{\sigma}^2_2, \ldots, \boldsymbol{\sigma}^2_K\\ \pi_1, \pi_2, \ldots, \pi_K \end{array}; \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \right ) &= \prod _{i=1} ^n f_{\text{mix}} \left( \mathbf{x}_i; \begin{array}{cccc} \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \ldots, \boldsymbol{\mu}_K \\ \boldsymbol{\sigma}^2_1, \boldsymbol{\sigma}^2_2, \ldots, \boldsymbol{\sigma}^2_K\\ \pi_1, \pi_2, \ldots, \pi_K \end{array} \right ) \\ &= \prod _{i=1} ^n \left [ \sum _{k=1} ^K \pi_k * f_{\text{mix}}(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k) \right ] \\ \therefore \log\mathcal{L}(\boldsymbol{\theta}) &= \sum _{i=1} ^n \log \left [ \sum _{k=1} ^K \pi_k * \frac{1}{\sqrt{2\pi}\boldsymbol{\sigma}_k} e^{\frac{-(\mathbf{x}_i-\boldsymbol{\mu}_k)^2}{2\boldsymbol{\sigma}^2_k}} \right ] \\ \end{align*}\] To solve the above equation, we need to understand convexity.