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Abstract

This week’s curriculum entails a further examination of the percep-
tron algorithm, followed by a comprehensive exploration of support vec-
tor machines (SVM) and subsequently, an elaboration on the concept of
soft-margin SVM.

Perceptron and Margins
Let dataset 𝐷 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} be linearly separable with 𝛾-margin
where 𝑥𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ {−1, 1}.

Let 𝑤∗ ∈ ℝ𝑑 be the weight vector s.t. (𝑤∗𝑇 𝑥𝑖)𝑦𝑖 ≥ 𝛾 ∀𝑖.
Let some 𝑅 > 0 ∈ ℝ, s.t. ∀𝑖 ||𝑥𝑖|| ≤ 𝑅.

Therefore, the number of mistakes made by the algorithm is given by,

#mistakes ≤ 𝑅2

𝛾2
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Observations

Let 𝑤𝑝𝑒𝑟𝑐 be any weight vector which can linearly separate the dataset.

Therefore, we observe the following:

1. “Quality” of the solution depends on the margin.
2. Number of mistakes depend on 𝑤∗’s margin.
3. 𝑤𝑝𝑒𝑟𝑐 need not necessarily be 𝑤∗.

Hence, our goal should be to find the solution that maximizes the margin.

Margin Maximization
From the previous analysis, it is clear that a single dataset could have multiple
linear classifiers with varying margins. The following diagram illustrates this
phenomenon,

Figure 1: Multiple Classifiers

Therefore, for getting the best classifier, our goal can be written as,

max
𝑤,𝛾

𝛾

𝑠.𝑡.(𝑤𝑇 𝑥𝑖)𝑦𝑖 ≥ 𝛾 ∀𝑖
||𝑤||2 = 1

The boundary of the margin is given by,

{𝑥 ∶ (𝑤𝑇 𝑥𝑖)𝑦𝑖 = 𝛾}

{𝑥 ∶ (𝑤
𝛾

𝑇
𝑥𝑖)𝑦𝑖 = 1}
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From the above equation, we can see that 𝛾 depends on the width of 𝑤. There-
fore, we reformulate our goal as,

max
𝑤

width(𝑤)

𝑠.𝑡.(𝑤𝑇 𝑥𝑖)𝑦𝑖 ≥ 1 ∀𝑖

Let the width be the distance between the two parallel margins, and let 𝑥 and
𝑧 be two points who are on the two lines exactly opposite to each other s.t.
𝑤𝑇 𝑥 = −1 and 𝑤𝑇 𝑧 = 1 or vice versa.

Let 𝑥1 and 𝑥2 be two points which lie on opposite side of the decision boundary
as well as on the margins.

Figure 2: Margin Width

Therefore, the width is given by,

||𝑥𝑇
1 𝑤 − 𝑥𝑇

2 𝑤||22 = 2
||𝑥1 − 𝑥2||22||𝑤||22 = 2

∴||𝑥1 − 𝑥2||22 = 2
||𝑤||22

Therefore, our objective function can be written as,

max
𝑤

2
||𝑤||22

𝑠.𝑡.(𝑤𝑇 𝑥𝑖)𝑦𝑖 ≥ 1 ∀𝑖

Equivalently,
min

𝑤
1
2 ||𝑤||22 𝑠.𝑡.(𝑤𝑇 𝑥𝑖)𝑦𝑖 ≥ 1 ∀𝑖

Therefore finding the separating hyperplane with maximum margin is equivalent
to finding the one with the smallest possible normal vector 𝑤.
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Constrained Optimization
Let a constrained optimization problem be formulated as follows,

min
𝑤

𝑓(𝑤)
𝑠.𝑡.𝑔(𝑤) ≤ 0

We can solve this problem using Lagrange Multipliers.

Lagrange multipliers are used in constrained optimization problems to find the
optimal values of the objective function subject to a set of constraints. In
Lagrange multipliers method, the constraints are incorporated into the objective
function by introducing additional variables called Lagrange multipliers.

The Lagrange function ℒ(𝑥, 𝛼), for our above function, is defined as follows:

ℒ(𝑤, 𝛼) = 𝑓(𝑤) + 𝛼𝑔(𝑤) ∀𝑤

where 𝛼 ≥ 0.

Therefore, maximizing the Lagrange function w.r.t. 𝛼,

max
𝛼≥0

ℒ(𝑤, 𝛼) = max
𝛼≥0

𝑓(𝑤) + 𝛼𝑔(𝑤)

= {∞ if 𝑔(𝑤) > 0
𝑓(𝑤) if 𝑔(𝑤) ≤ 0

As the Lagrange function is equal to 𝑓(𝑤) where 𝑔(𝑤) ≤ 0, we can rewrite our
original function as,

min
𝑤

𝑓(𝑤) = min
𝑤

[max
𝛼≥0

ℒ(𝑤, 𝛼)]

= min
𝑤

[max
𝛼≥0

𝑓(𝑤) + 𝛼𝑔(𝑤)]

In general, we cannot swap the min and max functions unless all the functions
involved are convex functions. Hence, as both 𝑓 and 𝑔 are convex functions in
our example, we can rewrite them as follows,

min
𝑤

[max
𝛼≥0

𝑓(𝑤) + 𝛼𝑔(𝑤)] ≡ max
𝛼≥0

[min
𝑤

𝑓(𝑤) + 𝛼𝑔(𝑤)]

Let’s rewrite the above constrained optimization problem with 𝑚 constraints
𝑔𝑖(𝑤) ≤ 0 where 𝑖 ∈ [1, 𝑚]. This can written as,

min
𝑤

𝑓(𝑤) ≡ min
𝑤

[max
𝛼≥0

𝑓(𝑤) +
𝑚

∑
𝑖=1

𝛼𝑖𝑔𝑖(𝑤)]

≡ max
𝛼≥0

[min
𝑤

𝑓(𝑤) +
𝑚

∑
𝑖=1

𝛼𝑖𝑔𝑖(𝑤)]
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Formulating the Dual Problem
Our Objective function is as follows,

min
𝑤

1
2 ||𝑤||22 𝑠.𝑡.(𝑤𝑇 𝑥𝑖)𝑦𝑖 ≥ 1 ∀𝑖

The constraints can be written as follows,

(𝑤𝑇 𝑥𝑖)𝑦𝑖 ≥ 1 ∀𝑖
1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖 ≤ 0 ∀𝑖

Let 𝛼 ∈ ℝ𝑑 be the Lagrange multipliers, and let our Lagrange function be
written as,

ℒ(𝑤, 𝛼) = 1
2||𝑤||22 +

𝑛
∑
𝑖=1

𝛼𝑖(1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖)

min
𝑤

max
𝛼≥0

[1
2||𝑤||22 +

𝑛
∑
𝑖=1

𝛼𝑖(1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖)] ≡ max
𝛼≥0

min
𝑤

[1
2||𝑤||22 +

𝑛
∑
𝑖=1

𝛼𝑖(1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖)]

Solving for the inner function of the dual problem, we get,

𝑤∗
𝛼 −

𝑛
∑
𝑖=1

𝛼𝑖𝑥𝑖𝑦𝑖 = 0

∴𝑤∗
𝛼 =

𝑛
∑
𝑖=1

𝛼𝑖𝑥𝑖𝑦𝑖

Rewriting the above equation in vectorized form, we get,

𝑤∗
𝛼 = 𝑋𝑌 𝛼 … [1]

where 𝑋 ∈ ℝ𝑑×𝑛, 𝑌 ∈ ℝ𝑛×𝑛, and 𝛼 ∈ ℝ𝑛. 𝑋 is the dataset, 𝑌 is the label
diagonal matrix, where the diagonals are the labels. Rewriting the outer dual
function, we get,

max
𝛼≥0

[1
2||𝑤||22 +

𝑛
∑
𝑖=1

𝛼𝑖(1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖)]

= max
𝛼≥0

[1
2𝑤𝑇 𝑤 +

𝑛
∑
𝑖=1

𝛼𝑖 − 𝑤𝑇 𝑋𝑌 𝛼]

= max
𝛼≥0

[1
2(𝑋𝑌 𝛼)𝑇 𝑋𝑌 𝛼 +

𝑛
∑
𝑖=1

𝛼𝑖 − (𝑋𝑌 𝛼)𝑇 𝑋𝑌 𝛼] … from [1]

= max
𝛼≥0

[1
2𝛼𝑇 𝑌 𝑇 𝑋𝑇 𝑋𝑌 𝛼 +

𝑛
∑
𝑖=1

𝛼𝑖 − 𝛼𝑇 𝑌 𝑇 𝑋𝑇 𝑋𝑌 𝛼]

= max
𝛼≥0

[
𝑛

∑
𝑖=1

𝛼𝑖 − 1
2𝛼𝑇 𝑌 𝑇 𝑋𝑇 𝑋𝑌 𝛼]
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Observations:

1. As the dual problem solves for 𝛼 ≥ 0, its variable dimension is in ℝ𝑛
+, while

as the primal problem solves for 𝑤, its variable dimension is in ℝ𝑑.
2. Solving the dual problem is “easier”.
3. As the dual problem depends on 𝑋𝑇 𝑋, it can be kernalized.

Some observations regarding the following equation,

𝑤∗
𝛼 =

𝑛
∑
𝑖=1

𝛼𝑖𝑥𝑖𝑦𝑖

1. The optimal 𝑤∗ is the linear combination of the datapoints where the
importance of each datapoint is given by 𝛼𝑖 for the 𝑖𝑡ℎ point.

2. Hence, there are points that are more important that others.

Support Vector Machine
Revisiting the Lagrangian function,

min
𝑤

[max
𝛼≥0

𝑓(𝑤) + 𝛼𝑔(𝑤)] ≡ max
𝛼≥0

[min
𝑤

𝑓(𝑤) + 𝛼𝑔(𝑤)]

The primal function is represented on the left-hand side of the equation, while
the right-hand side represents the dual function. 𝑤∗ and 𝛼∗ are the solutions
derived for the primal and dual functions, respectively. When these solutions
are inserted into the equation, we obtain,

max
𝛼≥0

𝑓(𝑤∗) + 𝛼𝑔(𝑤∗) = min
𝑤

𝑓(𝑤) + 𝛼∗𝑔(𝑤)

But as 𝑔(𝑤∗) ≤ 0, the left hand side equates to 𝑓(𝑤∗).
𝑓(𝑤∗) = min

𝑤
𝑓(𝑤) + 𝛼∗𝑔(𝑤)

Substituting 𝑤∗ for 𝑤 in the right-hand side of the equation would result in a
new right-hand side that is greater than or equal to the current one.

𝑓(𝑤∗) ≤ 𝑓(𝑤∗) + 𝛼∗𝑔(𝑤∗)
∴𝛼∗𝑔(𝑤∗) ≥ 0 … [1]

But, according to our constraints, 𝛼∗ ≥ 0 and 𝑔(𝑤∗) ≤ 0.

∴𝛼∗𝑔(𝑤∗) ≤ 0 … [2]
From [1] and [2], we get,

𝛼∗𝑔(𝑤∗) = 0
Rewriting the equation for multiple constraints, we get,

𝛼∗
𝑖𝑔(𝑤∗

𝑖 ) = 0 ∀𝑖
Therefore, if one of the two is greater than zero, the other equals zero. We know
that 𝑔(𝑤∗) = 1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖.

𝛼∗
𝑖 (1 − (𝑤𝑇 𝑥𝑖)𝑦𝑖) = 0 ∀𝑖
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As the importance of the 𝑖𝑡ℎ datapoint is given by 𝛼𝑖, if 𝛼𝑖 > 0, we get,

(𝑤𝑇 𝑥𝑖)𝑦𝑖 = 1

which means that the 𝑖𝑡ℎ datapoint lies on the “Supporting” hyperplane and
contributes to 𝑤∗.

Therefore, the datapoints whose 𝛼𝑖 > 0 are known as Support Vectors and
this algorithm is known as Support Vector Machine.

Support Vector Machines (SVMs) are a type of supervised learning al-
gorithm used for classification and regression analysis. SVMs aim to find the
optimal hyperplane that separates data points from different classes with the
maximum margin. In the case of non-linearly separable data, SVMs use kernel
functions to transform the data into a higher-dimensional space, where a linear
decision boundary can be used to separate the data.

Insight: 𝑤∗ is a sparse linear combination of the data points.

Hard-Margin SVM Algorithm
This algorithm only works if the dataset is linearly separable with a 𝛾 > 0.

1. Calculate 𝑄 = 𝑋𝑇 𝑋 directly or using a kernel as per the dataset.
2. Use the gradient of the dual formula (𝛼𝑇 1− 1

2 𝛼𝑇 𝑌 𝑇 𝑄𝑌 𝛼), in the gradient
descent algorithm to find a satisfactory 𝛼. Let the intial 𝛼 be a zero vector
∈ ℝ𝑛

+.
3. To predict:

• For non-kernelized SVM: label(𝑥𝑡𝑒𝑠𝑡) = 𝑤𝑇 𝑥𝑡𝑒𝑠𝑡 = ∑𝑛
𝑖=1 𝛼𝑖𝑦𝑖(𝑥𝑇

𝑖 𝑥𝑡𝑒𝑠𝑡)
• For kernelized SVM: label(𝑥𝑡𝑒𝑠𝑡) = 𝑤𝑇 𝜙(𝑥𝑡𝑒𝑠𝑡) = ∑𝑛

𝑖=1 𝛼𝑖𝑦𝑖𝑘(𝑥𝑇
𝑖 𝑥𝑡𝑒𝑠𝑡)

Soft-Margin SVM
Soft-Margin SVM is an extension of the standard SVM algorithm that allows
for some misclassifications in the training data. This is useful when the data
is not linearly separable, as it allows the SVM to still find a decision boundary
that separates the classes as best as possible while allowing for some errors. The
degree to which misclassifications are allowed is controlled by a regularization
parameter(𝐶), which is used to balance the trade-off between maximizing the
margin and minimizing the number of misclassifications.

The primal formulation for this is given by,

min
𝑤,𝜖

1
2 ||𝑤||22 + 𝐶

𝑛
∑
𝑖=1

𝜖𝑖 𝑠.𝑡. (𝑤𝑇 𝑥𝑖)𝑦𝑖 + 𝜖𝑖 ≥ 1; 𝜖𝑖 ≥ 0 ∀𝑖

where 𝐶 is the hyperparameter that is used to balance the trade-off between
maximizing the margin and minimizing the number of misclassifications, and 𝜖𝑖
is the additional value required to satisy the constraints.
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Credits
Professor Arun Rajkumar: The content as well as the notations are from his
slides and lecture.
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