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Abstract

The week centers on a discussion of two important topics in machine
learning, namely the Perceptron and Logistic Regression. It provides a
comprehensive overview of these topics, highlighting their key concepts,
underlying assumptions, and mathematical foundations.

Perceptron Learning Algorithm
The Perceptron Learning Algorithm (PLA) is a supervised learning algorithm
widely employed for binary classification tasks. Its primary objective is to deter-
mine a decision boundary that effectively separates the two classes in the dataset.
This algorithm belongs to the class of discriminative classification methods as
it focuses on modeling the boundary between classes instead of characterizing
the underlying probability distribution of each class.

Let 𝐷 = {(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)} represent the dataset, where x𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈
{0, 1}.

The algorithm is founded on the following assumptions:

1. 𝑃(𝑦 = 1|x) = 1 if wTx ≥ 0, otherwise 𝑃(𝑦 = 1|x) = 0.
2. Linear Separability Assumption: The Linear Separability Assump-

tion is a fundamental assumption made in various machine learning algo-
rithms, including the Perceptron Learning Algorithm. It posits that the
classes to be classified can be accurately separated by a linear decision
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boundary. In other words, there exists a hyperplane in the feature space
that can effectively segregate the data points of the two classes.

The objective function is defined as follows:

min
ℎ∈ℋ

𝑛
∑
𝑖=1

𝟙 (ℎ(x𝑖) ≠ 𝑦𝑖)

Even if ℋ accounts only for the Linear Hypotheses, this problem is generally
considered NP-Hard.

Under the Linear Separability Assumption, assuming the existence of w ∈ ℝ𝑑

such that sign(wTx𝑖) = 𝑦𝑖 holds for all 𝑖 ∈ {1, 2, … , 𝑛}, the PLA solves the
convergence problem using an iterative algorithm. The algorithm proceeds as
follows:

• Initialize w0 = 0 ∈ ℝ𝑑

• Until Convergence:
– Select a (x𝑖, 𝑦𝑖) pair from the dataset
– If sign(wTx𝑖) == 𝑦𝑖

∗ Do nothing
– Else

∗ Update the weight vector: w(𝑡+1) = w𝑡 + x𝑖𝑦𝑖
– End

Analysis of the Update Rule
For a given training example (x, 𝑦), where x represents the input and 𝑦 repre-
sents the correct output (either 1 or −1), the perceptron algorithm updates the
weight vector w according to the following rules:

• If the perceptron’s prediction on x is correct (i.e., sign(wTx𝑖) == 𝑦𝑖), no
update is performed.

• If the perceptron’s prediction on x is incorrect (i.e., sign(wTx𝑖) ≠ 𝑦𝑖), the
weights are updated by adding the product of the input vector and the
correct output to the current weight vector: w(𝑡+1) = w𝑡 + x𝑖𝑦𝑖.

• It is important to note that the update occurs solely in response to the cur-
rent data point. Consequently, data points that were previously classified
correctly may not be classified similarly in future iterations.

This update rule effectively adjusts the decision boundary in the direction of
correct classification for the misclassified example. The algorithm is guaranteed
to converge to a linearly separable solution if the data is indeed linearly sepa-
rable. However, if the data is not linearly separable, the perceptron algorithm
may not converge to a solution.
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Further Assumptions
We introduce three additional assumptions:

1. Linear Separability with 𝛾-Margin: A dataset 𝐷 = {(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)}
is considered linearly separable with a 𝛾-margin if there exists w∗ ∈ ℝ𝑑

such that (w∗𝑇 x𝑖)𝑦𝑖 ≥ 𝛾 holds for all 𝑖, where 𝛾 > 0.

Figure 1: Linear Separability with 𝛾-Margin

2. Radius Assumption: Let 𝑅 > 0 ∈ ℝ be a constant such that ∀𝑖 ∈ 𝐷,
||x𝑖|| ≤ 𝑅. In other words, 𝑅 denotes the length of the data point farthest
from the center.

3. Normal Length for w∗: Assume that w∗ has unit length.
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Proof of Convergence of Perceptron Algorithm
We denote the current mistake number as 𝑙. Based on our previous findings, we
can observe the following:

w𝑙+1 = w𝑙 + x𝑦
||w𝑙+1||2 = ||w𝑙 + x𝑦||2

= (w𝑙 + x𝑦)𝑇 (w𝑙 + x𝑦)
= ||w𝑙||2 + 2(w𝑙𝑇 x)𝑦 + ||x||2𝑦2

∴||w𝑙+1||2 ≤ ||w𝑙||2 + 𝑅2

≤ (||w𝑙−1||2 + 𝑅2) + 𝑅2

≤ ||w0||2 + 𝑙𝑅2

∴||w𝑙+1||2 ≤ 𝑙𝑅2 … [1]

Furthermore, we have:

w𝑙+1 = w𝑙 + x𝑦
(w𝑙+1)𝑇 w∗ = (w𝑙 + x𝑦)𝑇 w∗

= w𝑙𝑇 w∗ + (w∗𝑇 x)𝑦
∴(w𝑙+1)𝑇 w∗ ≥ w𝑙𝑇 w∗ + 𝛾

≥ (w𝑙−1𝑇 w∗ + 𝛾) + 𝛾
≥ w0𝑇 w∗ + 𝑙𝛾

∴(w𝑙+1)𝑇 w∗ ≥ 𝑙𝛾
((w𝑙+1)𝑇 w∗)2 ≥ 𝑙2𝛾2

||w𝑙+1||2||w∗||2 ≥ 𝑙2𝛾2 … Using the Cauchy-Schwarz inequality
∴||w𝑙+1||2 ≥ 𝑙2𝛾2 … [2]

Combining equations [1] and [2], we obtain:

𝑙2𝛾2 ≤ ||w𝑙+1||2 ≤ 𝑙𝑅2

𝑙2𝛾2 ≤ 𝑙𝑅2

∴𝑙 ≤ 𝑅2

𝛾2

Consequently, the above equation establishes an upper bound on the number
of mistakes for datasets conforming to the Linear Separability with 𝛾-Margin
property and having a finite radius 𝑅. This result demonstrates the convergence
of the perceptron algorithm.
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Logistic Regression
Sigmoid Function
Until now, we have utilized the sign function to determine the class for the
output. However, what if we also wish to obtain the probabilities associated
with these outputs?

Let 𝑧 = wTx, where 𝑧 ∈ ℝ. How can we map [−∞, ∞] → [0, 1]? To address
this, we introduce the Sigmoid Function, defined as follows:

𝑔(𝑧) = 1
1 + 𝑒−𝑧

Figure 2: Sigmoid Function

The sigmoid function is commonly employed in machine learning as an activation
function for neural networks. It exhibits an S-shaped curve, making it well-
suited for modeling processes with a threshold or saturation point, such as
logistic growth or binary classification problems.

For large positive input values, the sigmoid function approaches 1, while for
large negative input values, it approaches 0. When the input value is 0, the
sigmoid function output is exactly 0.5.

The term “sigmoid” is derived from the Greek word “sigmoides,” meaning
“shaped like the letter sigma” (Σ). The sigmoid function’s characteristic S-
shaped curve resembles the shape of the letter sigma, which likely influenced
the function’s name.
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Logistic Regression
Logistic regression is a statistical method used to analyze and model the re-
lationship between a binary (two-valued) dependent variable and one or more
independent variables. The independent variables can be either continuous or
categorical. The main objective of logistic regression is to estimate the probabil-
ity that the dependent variable belongs to one of the two possible values, given
the independent variable values.

In logistic regression, the dependent variable is modeled as a function of the in-
dependent variables using a logistic (sigmoid) function. This function generates
an S-shaped curve ranging between 0 and 1. By transforming the output of a
linear combination of the independent variables using the logistic function, lo-
gistic regression provides a probability estimate that can be used for classifying
new observations.

Let 𝐷 = {(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)} denote the dataset, where x𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈
{0, 1}.

We know that:

𝑃(𝑦 = 1|x) = 𝑔(wTx𝑖) = 1
1 + 𝑒−wTx

Using the maximum likelihood approach, we can derive the following expression:

ℒ(w; Data) =
𝑛

∏
𝑖=1

(𝑔(wTx𝑖))𝑦𝑖(1 − 𝑔(wTx𝑖))1−𝑦𝑖

log(ℒ(w; Data)) =
𝑛

∑
𝑖=1

𝑦𝑖 log(𝑔(wTx𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑔(wTx𝑖))

=
𝑛

∑
𝑖=1

𝑦𝑖 log ( 1
1 + 𝑒−wTx𝑖

) + (1 − 𝑦𝑖) log ( 𝑒−wTx𝑖

1 + 𝑒−wTx𝑖
)

=
𝑛

∑
𝑖=1

[(1 − 𝑦𝑖)(−wTx𝑖) − log(1 + 𝑒−wTx𝑖)]

Therefore, our objective, which involves maximizing the log-likelihood function,
can be formulated as follows:

max
w

𝑛
∑
𝑖=1

[(1 − 𝑦𝑖)(−wTx𝑖) − log(1 + 𝑒−wTx𝑖)]

However, a closed-form solution for this problem does not exist. Therefore, we
resort to using gradient descent for convergence.
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The gradient of the log-likelihood function is computed as follows:

∇ log(ℒ(w; Data)) =
𝑛

∑
𝑖=1

[(1 − 𝑦𝑖)(−x𝑖) − ( 𝑒−wTx𝑖

1 + 𝑒−wTx𝑖
) (−x𝑖)]

=
𝑛

∑
𝑖=1

[−x𝑖 + x𝑖𝑦𝑖 + x𝑖 ( 𝑒−wTx𝑖

1 + 𝑒−wTx𝑖
)]

=
𝑛

∑
𝑖=1

[x𝑖𝑦𝑖 − x𝑖 ( 1
1 + 𝑒−wTx𝑖

)]

∇ log(ℒ(w; Data)) =
𝑛

∑
𝑖=1

[x𝑖 (𝑦𝑖 − 1
1 + 𝑒−wTx𝑖

)]

Utilizing the gradient descent update rule, we obtain:

w𝑡+1 = w𝑡 + 𝜂𝑡∇ log(ℒ(w; Data))

= w𝑡 + 𝜂𝑡 (
𝑛

∑
𝑖=1

x𝑖 (𝑦𝑖 − 1
1 + 𝑒−wTx𝑖

))

Kernel and Regularized Versions

It is possible to argue that w∗ =
𝑛

∑
𝑖=1

𝛼𝑖x𝑖, thereby allowing for kernelization.

For additional information, please refer to this link.

The regularized version of logistic regression can be expressed as follows:

min
w

𝑛
∑
𝑖=1

[log(1 + 𝑒−wTx𝑖) + wTx𝑖(1 − 𝑦𝑖)] + 𝜆
2 ||w||2

Here, 𝜆
2 ||w||2 serves as the regularizer, and 𝜆 is determined through cross-

validation.
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