
Week-8: Naive Bayes and Gaussian Naive Bayes

Sherry Thomas
21f3001449

Contents
Generative Model Based Algorithm 1

Alternate Generative Model . . . . . . . . . . . . . . . . . . . . . . . . 2

Naive Bayes Algorithm 3
Prediction using the parameters . . . . . . . . . . . . . . . . . . . . . . 3
Pitfalls of Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Decision Function of Naive Bayes 5

Gaussian Naive Bayes 6
Prediction using Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . 7
Decision Boundaries for Different Covariances . . . . . . . . . . . . . . 8

Acknowledgments 10
Abstract

This week’s discussion revolves around the Naive Bayes algorithm for
classification, with a comprehensive analysis of its benefits and limitations.
Moreover, the session also covers the Gaussian Naive Bayes algorithm,
delving into its specifics and applications.

Generative Model Based Algorithm
A Generative Model Based Algorithm is an approach that seeks to model the
probability distribution of the input data and generate new samples based on
this distribution. The key idea involves learning the joint probability distribu-
tion of the features and labels in the training data and utilizing this learned
model to make predictions for previously unseen data.

Let us consider a dataset 𝐷 = {(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)}, where x𝑖 ∈ {0, 1}𝑑 and
𝑦𝑖 ∈ {0, 1}.

The general steps of the algorithm are as follows:

1. Decide the labels by tossing a coin with 𝑃(𝑦𝑖 = 1) = 𝑝.
2. Determine the features using the labels obtained in Step 1 through the

conditional probability 𝑃(x𝑖|𝑦𝑖).
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The parameters in the generative model are defined as follows:

1. Parameter ̂𝑝 to decide the label: 1
2. Parameters for 𝑃(x|𝑦 = 1): 2𝑑 − 1
3. Parameters for 𝑃(x|𝑦 = 0): 2𝑑 − 1

Consequently, the total number of parameters is given by:

= 1 + (2𝑑 − 1) + (2𝑑 − 1)
= 1 + 2(2𝑑 − 1)
= 2𝑑+1 − 1

Issues:

1. Too many parameters, which may lead to overfitting.
2. The model may not be practically viable due to the assumption made in

the generative process.

Alternate Generative Model
An alternative generative model starts with the class conditional independence
assumption, which is a common assumption in various machine learning algo-
rithms. This assumption states that the features of an object are conditionally
independent given its class label.

Let us again consider the dataset 𝐷 = {(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)}, with x𝑖 ∈ {0, 1}𝑑

and 𝑦𝑖 ∈ {0, 1}.

The general steps of the algorithm under this alternative model are as follows:

1. Decide the labels by tossing a coin with 𝑃(𝑦𝑖 = 1) = 𝑝.
2. Determine the features for x given 𝑦 using the following conditional prob-

ability:

𝑃(x = [𝑓1, 𝑓2, … , 𝑓𝑑]|𝑦) =
𝑑

∏
𝑖=1

(𝑝𝑦𝑖
𝑖 )𝑓𝑖(1 − 𝑝𝑦𝑖

𝑖 )1−𝑓𝑖

The parameters in this alternative model are as follows:

1. Parameter ̂𝑝 to decide the label: 1
2. Parameters for 𝑃(x|𝑦 = 1): 𝑑
3. Parameters for 𝑃(x|𝑦 = 0): 𝑑

Thus, the total number of parameters is given by:

= 1 + 𝑑 + 𝑑
= 2𝑑 + 1

The parameters are estimated using Maximum Likelihood Estimation.
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Naive Bayes Algorithm
The Naive Bayes algorithm is a classification algorithm based on Bayes’ theorem,
which assumes that the features are independent of each other given the class
label. The model calculates the probability of a sample belonging to a class
by estimating the conditional probability of each feature given the class and
then combining these probabilities using Bayes’ theorem. Despite its simple
assumption, Naive Bayes has been found to perform well in various applications,
particularly when the number of features is large but the training data is limited.

The model is given by:

𝑃(x = [𝑓1, 𝑓2, … , 𝑓𝑑]|𝑦) =
𝑑

∏
𝑖=1

(𝑝𝑦𝑖
𝑖 )𝑓𝑖(1 − 𝑝𝑦𝑖

𝑖 )1−𝑓𝑖

The parameters to be estimated are 𝑝, {𝑝0
1, 𝑝0

2, … , 𝑝0
𝑑}, and {𝑝1

1, 𝑝1
2, … , 𝑝1

𝑑}. Using
Maximum Likelihood Estimation, we obtain the following estimates:

̂𝑝 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖

̂𝑝𝑦
𝑗 =

𝑛
∑
𝑖=1

𝟙(𝑓 𝑖
𝑗 = 1, 𝑦𝑖 = 𝑦)

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 𝑦)
for all 𝑗 ∈ {1, 2, … , 𝑑}, and ∀𝑦 ∈ {0, 1}

Prediction using the parameters
Given x𝑡𝑒𝑠𝑡 ∈ {0, 1}𝑑, the prediction for ̂𝑦𝑡𝑒𝑠𝑡 is done using the following crite-
rion:

𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡) ≥ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡)

If the above inequality holds, then ̂𝑦𝑡𝑒𝑠𝑡 = 1, otherwise ̂𝑦𝑡𝑒𝑠𝑡 = 0.

Using Bayes’ rule, we can express 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡) and 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡) as
follows:

𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡) = 𝑃(x𝑡𝑒𝑠𝑡| ̂𝑦𝑡𝑒𝑠𝑡 = 1) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1)
𝑃(x𝑡𝑒𝑠𝑡)

𝑃 ( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡) = 𝑃(x𝑡𝑒𝑠𝑡| ̂𝑦𝑡𝑒𝑠𝑡 = 0) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 0)
𝑃(x𝑡𝑒𝑠𝑡)

However, since we are only interested in the comparison of these probabilities,
we can avoid calculating 𝑃(x𝑡𝑒𝑠𝑡).
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By solving for 𝑃 (x𝑡𝑒𝑠𝑡| ̂𝑦𝑡𝑒𝑠𝑡 = 1) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1), we find:

= 𝑃(x𝑡𝑒𝑠𝑡 = [𝑓1, 𝑓2, … , 𝑓𝑑]|𝑦𝑡𝑒𝑠𝑡 = 1) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1)

= (
𝑑

∏
𝑖=1

( ̂𝑝1
𝑖 )𝑓𝑖(1 − ̂𝑝1

𝑖 )1−𝑓𝑖) ∗ ̂𝑝

Similarly, we can obtain 𝑃(x𝑡𝑒𝑠𝑡| ̂𝑦𝑡𝑒𝑠𝑡 = 0) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 0).
Therefore, we predict ̂𝑦𝑡𝑒𝑠𝑡 = 1 if:

(
𝑑

∏
𝑖=1

( ̂𝑝1
𝑖 )𝑓𝑖(1 − ̂𝑝1

𝑖 )1−𝑓𝑖) ∗ ̂𝑝 ≥ (
𝑑

∏
𝑖=1

( ̂𝑝0
𝑖 )𝑓𝑖(1 − ̂𝑝0

𝑖 )1−𝑓𝑖) ∗ (1 − ̂𝑝)

Otherwise, we predict ̂𝑦𝑡𝑒𝑠𝑡 = 0.

The Naive Bayes algorithm employs two main techniques:

1. The Class Conditional Independence Assumption.
2. Utilizing Bayes’ Rule.

As a result, this algorithm is commonly referred to as Naive Bayes.

In summary, Naive Bayes is a classification algorithm based on Bayes’ theorem,
which assumes that the features are independent of each other given the class
label. It estimates the conditional probabilities of features given the class and
uses these probabilities to make predictions for new data. Despite its naive
assumption, Naive Bayes has demonstrated good performance across various
applications, particularly when dealing with high-dimensional data and limited
training examples.

Pitfalls of Naive Bayes
One prominent issue with Naive Bayes is that if a feature is not observed in the
training set but present in the testing set, the prediction probabilities for both
classes become zero.

𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡 = [𝑓1, 𝑓2, … , 𝑓𝑑]) ∝ (
𝑑

∏
𝑖=1

( ̂𝑝1
𝑖 )𝑓𝑖(1 − ̂𝑝1

𝑖 )1−𝑓𝑖) ∗ ̂𝑝

𝑃 ( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡 = [𝑓1, 𝑓2, … , 𝑓𝑑]) ∝ (
𝑑

∏
𝑖=1

( ̂𝑝0
𝑖 )𝑓𝑖(1 − ̂𝑝0

𝑖 )1−𝑓𝑖) ∗ (1 − ̂𝑝)

If any feature 𝑓𝑖 was absent in the training set, it results in ̂𝑝1
𝑖 = ̂𝑝0

𝑖 = 0, leading
to 𝑃 ( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡) = 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡) = 0.

A popular remedy for this issue is to introduce two “pseudo” data points with
labels 1 and 0, respectively, into the dataset, where all their features are set to
1. This technique is also known as Laplace smoothing.
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In brief, Laplace smoothing is a technique employed to address the zero-
frequency problem in probabilistic models, particularly in text classification. It
involves adding a small constant value to the count of each feature and the
number of unique classes to avoid zero probability estimates, which can cause
problems during model training and prediction. By incorporating this smooth-
ing term, the model becomes more robust and better suited for handling unseen
data.

Decision Function of Naive Bayes
Given x𝑡𝑒𝑠𝑡 ∈ {0, 1}𝑑, the prediction for ̂𝑦𝑡𝑒𝑠𝑡 is obtained using the following
decision function:

𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡)
𝑃 ( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡) ≥ 1

log (𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡)
𝑃 ( ̂𝑦𝑡𝑒𝑠𝑡 = 0|x𝑡𝑒𝑠𝑡)) ≥ 0

log
⎛⎜⎜⎜⎜
⎝

𝑃(x𝑡𝑒𝑠𝑡| ̂𝑦𝑡𝑒𝑠𝑡 = 1) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 1)
𝑃(x𝑡𝑒𝑠𝑡)

𝑃 (x𝑡𝑒𝑠𝑡| ̂𝑦𝑡𝑒𝑠𝑡 = 0) ∗ 𝑃( ̂𝑦𝑡𝑒𝑠𝑡 = 0)
𝑃(x𝑡𝑒𝑠𝑡)

⎞⎟⎟⎟⎟
⎠

≥ 0

log (
𝑑

∏
𝑖=1

( ̂𝑝1
𝑖 )𝑓𝑖(1 − ̂𝑝1

𝑖 )1−𝑓𝑖 ̂𝑝
( ̂𝑝0

𝑖 )𝑓𝑖(1 − ̂𝑝0
𝑖 )1−𝑓𝑖(1 − ̂𝑝)) ≥ 0

log (
𝑑

∏
𝑖=1

( ̂𝑝1
𝑖
̂𝑝0
𝑖

)
𝑓𝑖

(1 − ̂𝑝1
𝑖

1 − ̂𝑝0
𝑖

)
1−𝑓𝑖 ̂𝑝

1 − ̂𝑝) ≥ 0

𝑑
∑
𝑖=1

(𝑓𝑖 log ( ̂𝑝1
𝑖
̂𝑝0
𝑖

) + (1 − 𝑓𝑖) log (1 − ̂𝑝1
𝑖

1 − ̂𝑝0
𝑖

) + log ( ̂𝑝
1 − ̂𝑝)) ≥ 0

𝑑
∑
𝑖=1

(𝑓𝑖 log ( ̂𝑝1
𝑖 (1 − ̂𝑝0

𝑖 )
̂𝑝0
𝑖 (1 − ̂𝑝1

𝑖 ))) +
𝑑

∑
𝑖=1

log (1 − ̂𝑝1
𝑖

1 − ̂𝑝0
𝑖

) + log ( ̂𝑝
1 − ̂𝑝) ≥ 0

Thus, we can express the decision function as 𝑤𝑇 x + 𝑏 ≥ 0, where 𝑤 ∈ ℝ𝑑,

𝑤𝑖 = log ( ̂𝑝1
𝑖 (1 − ̂𝑝0

𝑖 )
̂𝑝0
𝑖 (1 − ̂𝑝1

𝑖 )), and 𝑏 =
𝑑

∑
𝑖=1

log (1 − ̂𝑝1
𝑖

1 − ̂𝑝0
𝑖

) + log ( ̂𝑝
1 − ̂𝑝).

Consequently, the decision function of Naive Bayes is linear.

The decision boundary is given by {x = 𝑃(𝑦 = 1|x) = 𝑃(𝑦 = 0|x)}.
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Gaussian Naive Bayes
Gaussian Naive Bayes, also known as Gaussian Discriminant Analysis (GDA)
or Gaussian Discriminant Analysis Naive Bayes (GDANB), represents a variant
of the Naive Bayes algorithm designed for classification tasks. This approach
assumes that the features in the dataset follow a Gaussian (normal) distribu-
tion and computes the likelihood of a class for a given set of feature values by
estimating the mean and variance of the feature values within each class.

Consider a dataset, D, comprising data points in the form of pairs
{(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)}, where x𝑖 ∈ ℝ𝑑 represents the feature vector and
𝑦𝑖 ∈ {0, 1} denotes the class label.

Let 𝑃(x|𝑦 = 1) ∼ 𝒩(𝜇1, Σ) and 𝑃(x|𝑦 = 0) ∼ 𝒩(𝜇0, Σ), with the assumption
that the covariance matrices are equal.

To estimate the parameters, we need to find values for ̂𝑝, 𝜇0, 𝜇1, and Σ. Using
Maximum Likelihood Estimation, we obtain the following results:

̂𝑝 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖

𝜇̂1 =

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 1) ∗ x𝑖

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 1)

𝜇̂0 =

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 0) ∗ x𝑖

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 0)

Σ̂ = 1
𝑛

𝑛
∑
𝑖=1

(x𝑖 − 𝜇̂𝑦𝑖
)(x𝑖 − 𝜇̂𝑦𝑖

)𝑇

In the above equations, ̂𝑝 represents the proportion of data points labeled 1,
𝜇̂1 is the sample mean of data points labeled 1, 𝜇̂0 is the sample mean of data
points labeled 0, and Σ̂ is the covariance matrix of the centered dataset.
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Prediction using Bayes’ Rule
Prediction is based on the following equation:

𝑃(𝑦𝑡𝑒𝑠𝑡 = 1|x𝑡𝑒𝑠𝑡) ∝ 𝑃(x𝑡𝑒𝑠𝑡|𝑦𝑡𝑒𝑠𝑡) ∗ 𝑃 (𝑦𝑡𝑒𝑠𝑡)

Where 𝑃(x𝑡𝑒𝑠𝑡|𝑦𝑡𝑒𝑠𝑡) ≡ 𝑓(x𝑡𝑒𝑠𝑡; 𝜇̂𝑦𝑡𝑒𝑠𝑡
, Σ̂) and 𝑃(𝑦𝑡𝑒𝑠𝑡) ≡ ̂𝑝.

To predict 𝑦𝑡𝑒𝑠𝑡 = 1, we compare the probabilities:

𝑓(x𝑖; 𝜇̂1, Σ̂1) ̂𝑝 ≥ 𝑓(x𝑖; 𝜇̂0, Σ̂0)(1 − ̂𝑝)

𝑒−(x𝑖−𝜇̂1)𝑇 Σ̂−1
1 (x𝑖−𝜇̂1) ̂𝑝 ≥ 𝑒−(x𝑖−𝜇̂0)𝑇 Σ̂−1

0 (x𝑖−𝜇̂0)(1 − ̂𝑝)

−(x𝑖 − 𝜇̂1)𝑇 Σ̂−1
1 (x𝑖 − 𝜇̂1) + log( ̂𝑝) ≥ −(x𝑖 − 𝜇̂0)𝑇 Σ̂−1

0 (x𝑖 − 𝜇̂0) + log(1 − ̂𝑝)

This inequality can be expressed as a linear decision function:

((𝜇̂1 − 𝜇̂0)𝑇 Σ̂−1) x𝑡𝑒𝑠𝑡 + 𝜇̂𝑇
0 Σ̂−1𝜇̂0 − 𝜇̂𝑇

1 Σ̂−1𝜇̂1 + log(1 − ̂𝑝
̂𝑝 ) ≥ 0

Thus, the decision function of Gaussian Naive Bayes is linear.
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Decision Boundaries for Different Covariances
1. When the covariance matrices are equal for both classes: As

previously discussed, the decision boundary is linear.

Figure 1: When the covariance matrices are equal for both classes

2. When the covariance matrices are Identity matrices for both
classes: The decision boundary is both linear and the perpendicular bi-
sector of the line drawn from 𝜇̂1 to 𝜇̂0.

3. When the covariance matrices are not equal for both classes: Let
Σ̂1 and Σ̂0 be the covariance matrices for classes 1 and 0, respectively.
They are given by,

Σ̂1 =

𝑛
∑
𝑖=1

(𝟙(𝑦𝑖 = 1) ∗ x𝑖 − 𝜇̂1)(𝟙(𝑦𝑖 = 1) ∗ x𝑖 − 𝜇̂1)𝑇

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 1)

Σ̂0 =

𝑛
∑
𝑖=1

(𝟙(𝑦𝑖 = 0) ∗ x𝑖 − 𝜇̂0)(𝟙(𝑦𝑖 = 0) ∗ x𝑖 − 𝜇̂0)𝑇

𝑛
∑
𝑖=1

𝟙(𝑦𝑖 = 0)

To predict 𝑦𝑡𝑒𝑠𝑡 = 1, we compare the probabilities:

𝑓(x𝑡𝑒𝑠𝑡; 𝜇̂1, Σ̂1) ∗ ̂𝑝 ≥ 𝑓(x𝑡𝑒𝑠𝑡; 𝜇̂0, Σ̂0) ∗ (1 − ̂𝑝)
𝑒−(x𝑡𝑒𝑠𝑡−𝜇̂1)𝑇 Σ̂1(x𝑡𝑒𝑠𝑡−𝜇̂1) ∗ ̂𝑝 ≥ 𝑒−(x𝑡𝑒𝑠𝑡−𝜇̂0)𝑇 Σ̂1(x𝑡𝑒𝑠𝑡−𝜇̂0) ∗ (1 − ̂𝑝)

−(x𝑡𝑒𝑠𝑡 − 𝜇̂1)𝑇 Σ̂1(x𝑡𝑒𝑠𝑡 − 𝜇̂1) + log( ̂𝑝) ≥ −(x𝑡𝑒𝑠𝑡 − 𝜇̂0)𝑇 Σ̂0(x𝑡𝑒𝑠𝑡 − 𝜇̂0) + log(1 − ̂𝑝)
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Figure 2: When the covariance matrices are Identity matrices for both classes
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This inequality leads to a quadratic decision function:

x𝑇
𝑡𝑒𝑠𝑡(Σ̂

−1
1 −Σ̂−1

0 )x𝑡𝑒𝑠𝑡−2(𝜇̂𝑇
1 Σ̂−1

1 −𝜇̂𝑇
0 Σ̂−1

0 )x𝑡𝑒𝑠𝑡+(𝜇̂𝑇
0 Σ̂−1

0 𝜇̂0−𝜇̂𝑇
1 Σ̂−1

1 𝜇̂1)+log(1 − ̂𝑝
̂𝑝 ) ≥ 0

Hence, the decision boundary is a quadratic function when the covariance
matrices are not equal for both classes.

Figure 3: When the covariance matrices are not equal for both classes
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