
Week-7: Binary Classification and Decision Trees

Sherry Thomas
21f3001449

Contents
Introduction to Binary Classification 1

Linear Classifier 2

K-Nearest Neighbors Algorithm 3
Issues with K-NN . 5

Introduction to Decision Trees 5
Goodness of a Question . 6
Decision Tree Algorithm . 7

Generative and Discriminative Models 8

Acknowledgments 8
Abstract

This week examines the primary methods of binary classification,
namely linear classifiers, K-nearest neighbor (K-NN) algorithm, and
decision trees. The advantages and disadvantages of each approach are
comprehensively discussed, alongside their efficient implementation.

Introduction to Binary Classification
Binary classification is a fundamental task in machine learning, commonly em-
ployed in various domains such as computer vision, natural language processing,
and bioinformatics. Its objective is to assign objects into one of two categories
based on their features.

Consider a dataset {x1, … , x𝑛}, where x𝑖 ∈ ℝ𝑑, and let {𝑦1, … , 𝑦𝑛} be the
corresponding labels, where 𝑦𝑖 ∈ {0, 1}. The goal is to find a function ℎ ∶ ℝ𝑑 →
{0, 1} that accurately predicts the labels.

To assess the performance of the classification function, a loss measure is em-
ployed. The loss function is defined as follows:

loss(ℎ) = 1
𝑛

𝑛
∑
𝑖=1

𝟙 (ℎ(x𝑖) ≠ 𝑦𝑖)

1

Let ℋlinear denote the solution space for the linear mapping:

ℋlinear = {h𝑤 ∶ ℝ𝑑 → {1, 0} s.t. h𝑤(x) = sign(w𝑇 x) ∀w ∈ ℝ𝑑}

Hence, the objective function can be expressed as:

min
ℎ∈ℋlinear

𝑛
∑
𝑖=1

𝟙 (ℎ(x𝑖) ≠ 𝑦𝑖)

However, it is important to note that this objective function presents an NP-
Hard problem, making it challenging to find optimal and sufficient parameters.
Therefore, improved implementations are required to address this complexity
and achieve satisfactory results.

Linear Classifier
Can linear regression be used to solve the binary classification problem? Let’s
examine the proposed algorithm:

{(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)} 𝐿𝑖𝑛𝑒𝑎𝑟−−−−−−−→
𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

w ∈ ℝ𝑑 → hw ∶ ℝ𝑑 → {1, 0}

However, employing linear regression for classification poses an issue. Consider
the following diagram:

Upon closer examination, it becomes evident that linear regression-based clas-
sification not only separates the two categories based on their respective sides
but also considers their positions. As a consequence, the classification boundary
may shift with respect to the outliers in the dataset. Hence, this approach is
not suitable for binary classification.

2

K-Nearest Neighbors Algorithm
The K-Nearest Neighbors (K-NN) algorithm is a widely-used non-parametric
method utilized for both classification and regression tasks in machine learning.
It operates by identifying the K-nearest data points to the target object and
classifying or regressing the target object based on the majority of its nearest
neighbors.

The algorithm follows these steps:

1. Given a test sample xtest, find the 𝑘 closest points in the training set,
denoted as {x∗

1, x∗
2, … , x∗

𝑘}.
2. Predict the label of the test sample as 𝑦test = majority(𝑦∗

1, 𝑦∗
2, … , 𝑦∗

𝑘).
The following diagrams illustrate the impact of the value of 𝑘 on the classifica-
tion:

When 𝑘 = 1, the classification is highly sensitive to outliers.

3

When 𝑘 = 𝑛, the classification becomes overly smooth.

When 𝑘 = 𝑘∗, the classification achieves a balanced result.

The choice of 𝑘 is typically determined through cross-validation, treating 𝑘 as a
hyperparameter. Smaller values of 𝑘 lead to more complex classifications.

4

Issues with K-NN
The K-NN algorithm suffers from several limitations:

1. The choice of distance function can yield different results. The Euclidean
distance, commonly used, might not always be the best fit for all scenarios.

2. Computationally, the algorithm can be demanding. When making predic-
tions for a single test data point, the distances between that data point
and all training points must be calculated and sorted. Consequently, the
algorithm has a complexity of 𝑂(𝑛 log(𝑛)), where 𝑛 represents the size of
the dataset.

3. The algorithm does not learn a model but instead relies on the training
dataset for making predictions.

Introduction to Decision Trees
Decision trees are widely used in machine learning for classification and regres-
sion tasks. They operate by recursively partitioning the data based on the most
informative features until a stopping criterion is met. Decision trees can be
visualized as tree-like structures.

Consider a dataset {x1, … , x𝑛}, where x𝑖 ∈ ℝ𝑑, and let {𝑦1, … , 𝑦𝑛} be the cor-
responding labels, where 𝑦𝑖 ∈ {0, 1}. The output of the decision tree algorithm
is a constructed decision tree.

Prediction: Given a test sample xtest, we traverse the decision tree to reach a
leaf node, and the label assigned to the leaf node is considered as 𝑦test.

The following diagram depicts a decision tree:

5

Here, a question refers to a (feature, value) pair. For example, ℎ𝑒𝑖𝑔ℎ𝑡 ≤
180cm?

Goodness of a Question
To evaluate the quality of a question, we need a measure of “impurity” for a set
of labels {𝑦1, … , 𝑦𝑛}. Various measures can be employed, but we will use the
Entropy function.

The Entropy function is defined as:

Entropy({𝑦1, … , 𝑦𝑛}) = Entropy(𝑝) = − (𝑝 log(𝑝) + (1 − 𝑝) log(1 − 𝑝))

Here, log(0) is conventionally treated as 0.

Pictorial representation of the Entropy function:

6

Information Gain is then utilized to measure the quality of a split in the decision
tree algorithm.

Information gain is a commonly used criterion in decision tree algorithms
that quantifies the reduction in entropy or impurity of a dataset after splitting
based on a given feature. High information gain signifies features that effec-
tively differentiate between the different classes of data and lead to accurate
predictions.

Information gain is calculated as:

Information Gain(feature, value) = Entropy(𝐷)−[𝛾 ⋅ Entropy(𝐷yes) + (1 − 𝛾) ⋅ Entropy(𝐷no)]

where 𝛾 is defined as:

𝛾 = |𝐷yes|
|𝐷|

Decision Tree Algorithm
The decision tree algorithm follows these steps:

1. Discretize each feature within the range [min, max].
2. Select the question that provides the highest information gain.
3. Repeat the procedure for subsets 𝐷yes and 𝐷no.
4. Stop growing the tree when a node becomes sufficiently “pure” according

to a predefined criterion.

Different measures, such as the Gini Index, can also be employed to evaluate
the quality of a question.

Pictorial depiction of the decision boundary and its decision tree:

7

Generative and Discriminative Models
In classical classification problems, two types of models are commonly employed:
generative models and discriminative models.

Generative models capture the joint distribution between features and labels
and are represented as:

𝑃(x, 𝑦)

These models focus on modeling the feature generation process.

On the other hand, discriminative models directly model the conditional prob-
ability of labels given the features and are represented as:

𝑃(𝑦|x)

Discriminative models generate labels solely based on the provided data.

It is important to understand the differences between generative and discrim-
inative models when choosing an appropriate modeling approach for a given
classification problem.

Acknowledgments
Professor Arun Rajkumar: The content, including the concepts and nota-
tions presented in this document, has been sourced from his slides and lectures.
His expertise and educational materials have greatly contributed to the devel-
opment of this document.

8

	Introduction to Binary Classification
	Linear Classifier
	K-Nearest Neighbors Algorithm
	Issues with K-NN

	Introduction to Decision Trees
	Goodness of a Question
	Decision Tree Algorithm

	Generative and Discriminative Models
	Acknowledgments

