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Abstract

In this week’s discussion on Linear Regression, we explore various tech-
niques to minimize Mean Squared Error (MSE) and delve into the con-
cepts of Ridge and Lasso regression. These methods aim to optimize
the performance of the linear regression model and improve its predictive
power.

Evaluation of the Maximum Likelihood Estima-
tor for Linear Regression
Introduction
Linear regression is a widely used technique for modeling the relationship be-
tween a dependent variable and one or more independent variables. The maxi-
mum likelihood estimator (MLE) is commonly employed to estimate the param-
eters of a linear regression model. Here, we discuss the goodness of the MLE for
linear regression, explore cross-validation techniques to minimize mean squared
error (MSE), examine Bayesian modeling as an alternative approach, and finally,
delve into ridge and lasso regression as methods to mitigate overfitting.
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Goodness of Maximum Likelihood Estimator for
Linear Regression
Consider a dataset comprising input vectors {x1, … , x𝑛}, where each x𝑖 ∈ ℝ𝑑,
and corresponding labels {𝑦1, … , 𝑦𝑛}, with 𝑦𝑖 ∈ ℝ. We can express the relation-
ship between the inputs and labels using the linear regression model:

𝑦|X = w𝑇 x + 𝜖

Here, 𝜖 represents the random noise following a normal distribution 𝒩(0, 𝜎2),
and w ∈ ℝ𝑑 denotes the regression coefficients. The maximum likelihood pa-
rameter estimation for linear regression, denoted as ŵML, can be computed
as:

ŵML = w∗ = (XX𝑇 )+Xy

To evaluate the quality of the estimated parameters, we measure the mean
squared error (MSE) between the estimated parameters and the true parameters
w. The MSE is given by:

𝔼[||ŵML − w||22]

Interestingly, the MSE can be expressed as:

𝔼[||ŵML − w||22] = 𝜎2 ⋅ trace((XX𝑇 )−1)

This result provides a quantitative measure of the goodness of the maximum
likelihood estimator for linear regression.
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Cross-Validation for Minimizing MSE
In order to minimize the MSE, we can utilize cross-validation techniques. Let the
eigenvalues of XX𝑇 be denoted as {𝜆1, … , 𝜆𝑑}. Consequently, the eigenvalues
of (XX𝑇 )−1 are given by { 1

𝜆1
, … , 1

𝜆𝑑
}.

The MSE can be expressed as:

𝔼[||ŵML − w||22] = 𝜎2
𝑑

∑
𝑖=1

1
𝜆𝑖

To improve the estimator, we introduce a modified estimator, denoted as ŵnew,
defined as:

ŵnew = (XX𝑇 + 𝜆I)−1Xy

Here, 𝜆 ∈ ℝ and I ∈ ℝ𝑑×𝑑 represents the identity matrix. By utilizing this
modified estimator, we can calculate:

trace((XX𝑇 + 𝜆I)−1) =
𝑑

∑
𝑖=1

1
𝜆𝑖 + 𝜆

According to the Existence Theorem, there exists a value of 𝜆 such that ŵnew
exhibits a lower mean squared error than ŵML. In practice, the value for 𝜆 is
determined using cross-validation techniques.

Three commonly used techniques for cross-validation are as follows:

1. Training-Validation Split: The training set is randomly divided into
a training set and a validation set, typically in an 80:20 ratio. Among
various 𝜆 values, the one that yields the lowest error is selected.

2. K-Fold Cross Validation: The training set is partitioned into K equally-
sized parts. The model is trained K times, each time using K-1 parts as
the training set and the remaining part as the validation set. The 𝜆 value
that leads to the lowest average error is chosen.

3. Leave-One-Out Cross Validation: The model is trained using all but
one sample in the training set, and the left-out sample is used for valida-
tion. This process is repeated for each sample in the dataset. The optimal
𝜆 is determined based on the average error across all iterations.

By employing cross-validation techniques, we can enhance the performance of
the linear regression model by selecting an appropriate value of 𝜆.
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Bayesian Modeling
Alternatively, we can understand the maximum likelihood estimator ŵML in the
context of Bayesian modeling.

Assume that 𝑃(𝑦|X) follows a normal distribution 𝒩(w𝑇 x, I), where 𝐼 repre-
sents the identity matrix for simplicity.

For the prior distribution of w, a suitable choice is the normal distribution
𝒩(0, 𝛾2I), where 𝛾2I ∈ ℝ𝑑×𝑑.

Thus, we can write:

𝑃(w|{(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)}) ∝ 𝑃({(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)}|w) ∗ 𝑃 (w)

∝ (
𝑛

∏
𝑖=1

𝑒 −(𝑦𝑖−w𝑇 x𝑖)2
2 ) ∗ (

𝑑
∏
𝑖=1

𝑒
−(w𝑖−0)2

2𝛾2 )

∝ (
𝑛

∏
𝑖=1

𝑒 −(𝑦𝑖−w𝑇 x𝑖)2
2 ) ∗ 𝑒

−||w||2
2𝛾2

Taking the logarithm, we obtain:

log(𝑃 (w|{(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)})) ∝ −(𝑦𝑖 − w𝑇 x𝑖)2

2 − ||w||2
2𝛾2

Upon computing the gradient, we find:

∇ log(𝑃 (w|{(x1, 𝑦1), … , (x𝑛, 𝑦𝑛)})) ∝ (XX𝑇 )ŵMAP − Xy + ŵMAP
𝛾2

Consequently, the maximum a posteriori estimate (MAP) for w can be com-
puted as:

ŵMAP = (XX𝑇 + 1
𝛾2 I)−1Xy

In practice, the value of 1
𝛾2 is obtained using cross-validation. Remarkably, this

maximum a posteriori estimation for linear regression with a Gaussian prior
𝒩(0, 𝛾2I) for w is equivalent to the modified estimator ŵnew discussed earlier.
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Ridge Regression
Ridge regression is a linear regression technique that addresses multicollinearity
and overfitting by adding a penalty term to the ordinary least squares method.

The objective function of ridge regression is given by:

min
w∈ℝ𝑑

𝑛
∑
𝑖=1

(w𝑇 x𝑖 − 𝑦𝑖)2 + 𝜆||w||22

Here, 𝜆||w||22 serves as the regularization term, and ||w||22 represents the squared
L2 norm of w. Let us denote this equation as 𝑓(w).
Alternatively, we can express ridge regression as:

min
w∈ℝ𝑑

𝑛
∑
𝑖=1

(w𝑇 x𝑖 − 𝑦𝑖)2 s.t. ||w||22 ≤ 𝜃

Here, the value of 𝜃 depends on 𝜆. We can conclude that for any choice of
𝜆 > 0, there exists a corresponding 𝜃 such that optimal solutions to our objective
function exist.

The loss function for linear regression with the maximum likelihood estimator
wML is defined as:

𝑓(wML) =
𝑛

∑
𝑖=1

(w𝑇
MLx𝑖 − 𝑦𝑖)2

Consider the set of all w such that 𝑓(wML) = 𝑓(w) + 𝑐, where 𝑐 > 0. This set
can be represented as:

𝑆𝑐 = {w ∶ 𝑓(wML) = 𝑓(w) + 𝑐}

In other words, every w ∈ 𝑆𝑐 satisfies the equation:

||X𝑇 w − y||2 = ||X𝑇 wML − y||2 + 𝑐

Simplifying the equation yields:

(w − wML)𝑇 (XX𝑇 )(w − wML) = 𝑐′

The value of 𝑐′ depends on 𝑐, XX𝑇 , and wML, but it does not depend on w.
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In summary, ridge regression regularizes the feature values, pushing them to-
wards zero, but not necessarily to zero.

Lasso Regression
Lasso (Least Absolute Shrinkage and Selection Operator) regression is a linear
regression technique that employs a regularization approach to shrink the co-
efficients of less important features to zero. This method effectively performs
feature selection and mitigates overfitting.

The objective function of lasso regression is given by:

min
w∈ℝ𝑑

𝑛
∑
𝑖=1

(w𝑇 x𝑖 − 𝑦𝑖)2 + 𝜆||w||21

Lasso regression is similar to ridge regression, with the key difference being the
use of ||w||21 instead of ||w||22, representing the squared L1 norm of w.
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Lasso regression does not have a closed-form solution and is often solved using
sub-gradients. Further information on sub-gradients can be found here.

In conclusion, lasso regression shrinks the coefficients of less important features
to exactly zero, enabling feature selection.
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