Week-6: Regression and Regularization
Techniques

Sherry Thomas
21£3001449

Contents

Evaluation of the Maximum Likelihood Estimator for Linear Re-
gression
Introduction . . . . . . . . ...

Goodness of Maximum Likelihood Estimator for Linear Regression
Cross-Validation for Minimizing MSE

Bayesian Modeling

Ridge Regression

Lasso Regression

Acknowledgments
Abstract

In this week’s discussion on Linear Regression, we explore various tech-
niques to minimize Mean Squared Error (MSE) and delve into the con-
cepts of Ridge and Lasso regression. These methods aim to optimize
the performance of the linear regression model and improve its predictive
power.

Evaluation of the Maximum Likelihood Estima-

tor for Linear Regression

Introduction

Linear regression is a widely used technique for modeling the relationship be-
tween a dependent variable and one or more independent variables. The maxi-
mum likelihood estimator (MLE) is commonly employed to estimate the param-
eters of a linear regression model. Here, we discuss the goodness of the MLE for
linear regression, explore cross-validation techniques to minimize mean squared
error (MSE), examine Bayesian modeling as an alternative approach, and finally,

delve into ridge and lasso regression as methods to mitigate overfitting.



Goodness of Maximum Likelihood Estimator for
Linear Regression

Consider a dataset comprising input vectors {x;,...,x, }, where each x, € R?,
and corresponding labels {y;, ..., y,}, with y; € R. We can express the relation-
ship between the inputs and labels using the linear regression model:

yX=wlx+e
Here, € represents the random noise following a normal distribution N (0, 0?),
and w € R? denotes the regression coefficients. The maximum likelihood pa-

rameter estimation for linear regression, denoted as Wy, can be computed
as:

Wy = W= (XXT)+XY
To evaluate the quality of the estimated parameters, we measure the mean

squared error (MSE) between the estimated parameters and the true parameters
w. The MSE is given by:

Efl[ W, — wl[3]

Interestingly, the MSE can be expressed as:

Ef[[ %y, — W3] = 0 - trace((XXT) ™)

This result provides a quantitative measure of the goodness of the maximum
likelihood estimator for linear regression.



Cross-Validation for Minimizing MSE

In order to minimize the MSE, we can utilize cross-validation techniques. Let the
eigenvalues of XX be denoted as {\,...,\;}. Consequently, the eigenvalues
of (XXT)~1 are given by {)\%7 ey i}

The MSE can be expressed as:

d
. 1
Ell[Wy, — wl[3] = o Z W
i=1 "M

To improve the estimator, we introduce a modified estimator, denoted as W,
defined as:

w XXT + A1 Xy

new = (
Here, A € R and I € R?*? represents the identity matrix. By utilizing this
modified estimator, we can calculate:

d
1
trace((XXT +AI) 1) =) ——
(( )) ; VY
According to the Existence Theorem, there exists a value of A such that w,
exhibits a lower mean squared error than wy,. In practice, the value for A is
determined using cross-validation techniques.

Three commonly used techniques for cross-validation are as follows:

1. Training-Validation Split: The training set is randomly divided into
a training set and a validation set, typically in an 80:20 ratio. Among
various A values, the one that yields the lowest error is selected.

2. K-Fold Cross Validation: The training set is partitioned into K equally-
sized parts. The model is trained K times, each time using K-1 parts as
the training set and the remaining part as the validation set. The A value
that leads to the lowest average error is chosen.

3. Leave-One-Out Cross Validation: The model is trained using all but
one sample in the training set, and the left-out sample is used for valida-
tion. This process is repeated for each sample in the dataset. The optimal
A is determined based on the average error across all iterations.

By employing cross-validation techniques, we can enhance the performance of
the linear regression model by selecting an appropriate value of .



Bayesian Modeling

Alternatively, we can understand the maximum likelihood estimator Wy, in the
context of Bayesian modeling.

Assume that P(y|X) follows a normal distribution N (w’x,I), where I repre-
sents the identity matrix for simplicity.

For the prior distribution of w, a suitable choice is the normal distribution
N(0,~I), where %I € R,

Thus, we can write:

P(W|{(X17y1)7“'?(Xn’yn)}) X P({(Xlayl)v“'7(Xn’yn)}|w) *P(W>

n —(y;—wTx;)2 d —(w;—0)2
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Taking the logarithm, we obtain:

log(PWI{(1, 1), - (5, 1)1)) ox 2 [W]

Upon computing the gradient, we find:

Viog(P(W{(x1,41), -+, (X, 4) })) o< (XXT) Ry pp — Xy + ‘?Vl;dzAP

Consequently, the maximum a posteriori estimate (MAP) for w can be com-
puted as:

- 1
WNAP — (XXT + ?I) 1Xy

In practice, the value of 25 is obtained using cross-validation. Remarkably, this
maximum a posteriori estimation for linear regression with a Gaussian prior
N(0,421) for w is equivalent to the modified estimator W, discussed earlier.



Ridge Regression

Ridge regression is a linear regression technique that addresses multicollinearity
and overfitting by adding a penalty term to the ordinary least squares method.

The objective function of ridge regression is given by:

n

min > (wTx; —y,)? + Al|wl[3
weR4 =

=1
Here, A\||w]||3 serves as the regularization term, and ||w||3 represents the squared
L2 norm of w. Let us denote this equation as f(w).

Alternatively, we can express ridge regression as:

n

min » (w
weR? =]

Tx—y)? st |lwlF<6

Here, the value of 6 depends on A\. We can conclude that for any choice of
A > 0, there exists a corresponding 6 such that optimal solutions to our objective
function exist.

The loss function for linear regression with the maximum likelihood estimator
wyp, i defined as:

n

fwyp) = (W{/ILXz‘ - yi)2
i—1

=

Consider the set of all w such that f(wy,) = f(w) + ¢, where ¢ > 0. This set
can be represented as:

Se=Aw: f(wyr) = f(w) + ¢}
In other words, every w € .S, satisfies the equation:
IXTw —y[|* = [[XTwyg, —yl]* +c¢
Simplifying the equation yields:
(W —wyp,) T (XXT) (W —wyy,) = ¢

The value of ¢’ depends on ¢, XX, and wy,, but it does not depend on w.



7
|wl[*> < 0

In summary, ridge regression regularizes the feature values, pushing them to-
wards zero, but not necessarily to zero.

Lasso Regression

Lasso (Least Absolute Shrinkage and Selection Operator) regression is a linear
regression technique that employs a regularization approach to shrink the co-
efficients of less important features to zero. This method effectively performs
feature selection and mitigates overfitting.

The objective function of lasso regression is given by:

n

min 3 (w7, — y,)2 + Al|wl[?
weR =1

Lasso regression is similar to ridge regression, with the key difference being the
use of ||w||? instead of ||w||2, representing the squared L1 norm of w.



AN

[w][* < 6

Lasso regression does not have a closed-form solution and is often solved using
sub-gradients. Further information on sub-gradients can be found here.

In conclusion, lasso regression shrinks the coefficients of less important features
to exactly zero, enabling feature selection.
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