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Abstract

The week introduces estimators, and delves deeper into topics like
Maximum Likelihood Estimator and Bayesian Estimator. Later, it goes
into Gaussian Mixture Models and its implementation.

Introduction to Estimation in Machine Learning
Estimation in machine learning involves inferring unknown parameters or pre-
dicting outcomes from observed data. Estimators, often algorithms or models,
are used for these tasks and to characterize the data’s underlying distribution.

Let {x1, x2, … , x𝑛} represent a dataset, where each data point x𝑖 is in the
𝑑-dimensional binary space {0, 1}𝑑. It is assumed that the data points are
independent and identically distributed (i.i.d).

Independence is denoted as 𝑃(x𝑖|x𝑗) = 𝑃(x𝑖). Identically distributed means
𝑃 (x𝑖) = 𝑃(x𝑗) = 𝑝.
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Maximum Likelihood Estimation
Fisher’s Principle of Maximum Likelihood
Fisher’s principle of maximum likelihood is a statistical method used to estimate
parameters of a statistical model by selecting values that maximize the likelihood
function. This function quantifies how well the model fits the observed data.

Likelihood Estimation for Bernoulli Distributions
Applying the likelihood function on the aforementioned dataset, we obtain:

ℒ(𝑝; {x1, x2, … , x𝑛}) = 𝑃(x1, x2, … , x𝑛; 𝑝)
= 𝑝(x1; 𝑝)𝑝(x2; 𝑝) … 𝑝(x𝑛; 𝑝)

=
𝑛

∏
𝑖=1

𝑝x𝑖(1 − 𝑝)1−x𝑖

∴ log(ℒ(𝑝; {x1, x2, … , x𝑛})) = arg max
𝑝

log (
𝑛

∏
𝑖=1

𝑝x𝑖(1 − 𝑝)1−x𝑖)

Differentiating wrt 𝑝, we get

∴ ̂𝑝ML = 1
𝑛

𝑛
∑
𝑖=1

x𝑖

Likelihood Estimation for Gaussian Distributions
Let {x1, x2, … , x𝑛} be a dataset where x𝑖 ∼ 𝒩(𝜇, 𝜎2). We assume that the data
points are independent and identically distributed.

ℒ(𝜇, 𝜎2; {x1, x2, … , x𝑛}) = 𝑓x1,x2,…,x𝑛
(x1, x2, … , x𝑛; 𝜇, 𝜎2)

=
𝑛

∏
𝑖=1

𝑓x𝑖
(x𝑖; 𝜇, 𝜎2)

=
𝑛

∏
𝑖=1

[ 1√
2𝜋𝜎 𝑒

−(x𝑖−𝜇)2
2𝜎2 ]

∴ log(ℒ(𝑝; {x1, x2, … , x𝑛})) =
𝑛

∑
𝑖=1

[log ( 1√
2𝜋𝜎 ) − (x𝑖 − 𝜇)2

2𝜎2 ]

By differentiating with respect to 𝜇 and 𝜎, we get

𝜇̂ML = 1
𝑛

𝑛
∑
𝑖=1

x𝑖

̂𝜎2
ML = 1

𝑛
𝑛

∑
𝑖=1

(x𝑖 − 𝜇)𝑇 (x𝑖 − 𝜇)
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Bayesian Estimation
Bayesian estimation is a statistical method that updates parameter estimates by
incorporating prior knowledge or beliefs along with observed data to calculate
the posterior probability distribution of the parameters.

Let {x1, x2, … , x𝑛} be a dataset where x𝑖 follows a distribution with parameters
𝜃. We assume that the data points are independent and identically distributed,
and we also consider 𝜃 as a random variable with its own probability distribution.

Our objective is to update the parameters using the available data.

i.e.
𝑃(𝜃) ⇒ 𝑃(𝜃|{x1, x2, … , x𝑛})

where, employing Bayes’ Law, we find

𝑃(𝜃|{x1, x2, … , x𝑛}) = (𝑃({x1, x2, … , x𝑛}|𝜃)
𝑃 ({x1, x2, … , x𝑛}) ) ∗ 𝑃(𝜃)

Bayesian Estimation for a Bernoulli Distribution
Let {𝑥1, 𝑥2, … , 𝑥𝑛} be a dataset where 𝑥𝑖 ∈ {0, 1} with parameter 𝜃. What
distribution can be suitable for 𝑃(𝜃)?
A commonly used distribution for priors is the Beta Distribution.

𝑓(𝑝; 𝛼, 𝛽) = 𝑝𝛼−1(1 − 𝑝)𝛽−1

𝑧 ∀𝑝 ∈ [0, 1]

where 𝑧 is a normalizing factor

Hence, utilizing the Beta Distribution as the Prior, we obtain,

𝑃(𝜃|{𝑥1, 𝑥2, … , 𝑥𝑛}) ∝ 𝑃(𝜃|{𝑥1, 𝑥2, … , 𝑥𝑛}) ∗ 𝑃(𝜃)

𝑓𝜃|{𝑥1,𝑥2,…,𝑥𝑛}(𝑝) ∝ [
𝑛

∏
𝑖=1

𝑝𝑥𝑖(1 − 𝑝)1−𝑥𝑖] ∗ [𝑝𝛼−1(1 − 𝑝)𝛽−1]

𝑓𝜃|{𝑥1,𝑥2,…,𝑥𝑛}(𝑝) ∝ 𝑝∑𝑛
𝑖=1 𝑥𝑖+𝛼−1(1 − 𝑝)∑𝑛

𝑖=1(1−𝑥𝑖)+𝛽−1

i.e. we obtain,

BETA PRIOR (𝛼, 𝛽)
{𝑥1,𝑥2,…,𝑥𝑛}
−−−−−−−−→

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖
BETA POSTERIOR (𝛼 + 𝑛ℎ, 𝛽 + 𝑛𝑡)

∴ ̂𝑝ML = 𝔼[Posterior] = 𝔼[Beta(𝛼 + 𝑛ℎ, 𝛽 + 𝑛𝑡)] = 𝛼 + 𝑛ℎ
𝛼 + 𝑛ℎ + 𝛽 + 𝑛𝑡

3



Gaussian Mixture Models
Gaussian Mixture Models are a type of probabilistic model used to represent
complex data distributions by combining multiple Gaussian distributions.

The procedure is as follows:

• Step 1: Generate a mixture component among {1, 2, … , 𝐾} where 𝑧𝑖 ∈
{1, 2, … , 𝐾}. We obtain,

𝑃(𝑧𝑖 = 𝑘) = 𝜋𝑘 [
𝐾

∑
𝑖=1

𝜋𝑖 = 1 0 ≤ 𝜋𝑖 ≤ 1 ∀𝑖]

• Step 2: Generate x𝑖 ∼ 𝒩(𝜇𝑧𝑖
, 𝜎2

𝑧𝑖
)

Hence, there are 3𝐾 parameters. However, since
𝐾

∑
𝑖=1

𝜋𝑖 = 1, the number of

parameters to be estimated becomes 3𝐾 − 1 for a GMM with 𝐾 components.

Likelihood of GMM’s

ℒ ⎛⎜
⎝

𝜇1, 𝜇2, … , 𝜇𝐾
𝜎2

1, 𝜎2
2, … , 𝜎2

𝐾
𝜋1, 𝜋2, … , 𝜋𝐾

; x1, x2, … , x𝑛
⎞⎟
⎠

=
𝑛

∏
𝑖=1

𝑓mix
⎛⎜
⎝

x𝑖;
𝜇1, 𝜇2, … , 𝜇𝐾
𝜎2

1, 𝜎2
2, … , 𝜎2

𝐾
𝜋1, 𝜋2, … , 𝜋𝐾

⎞⎟
⎠

=
𝑛

∏
𝑖=1

[
𝐾

∑
𝑘=1

𝜋𝑘 ∗ 𝑓mix(x𝑖; 𝜇𝑘, 𝜎𝑘)]

∴ log ℒ(𝜃) =
𝑛

∑
𝑖=1

log [
𝐾

∑
𝑘=1

𝜋𝑘 ∗ 1√
2𝜋𝜎𝑘

𝑒
−(x𝑖−𝜇𝑘)2

2𝜎2
𝑘 ]

To solve the above equation, we need to understand convexity.

Convexity and Jensen’s Inequality
Convexity is a property of a function or set that implies a unique line segment
can be drawn between any two points within the function or set. For a concave
function, this property can be expressed as,

𝑓 (
𝐾

∑
𝑘=1

𝜆𝑘𝑎𝑘) ≥
𝐾

∑
𝑘=1

𝜆𝑘𝑓(𝑎𝑘)

where
𝐾

∑
𝑘=1

𝜆𝑘 = 1

𝑎𝑘 are points of the function

This is also known as Jensen’s Inequality.
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Estimating the Parameters
Since log is a concave function, we can approximate the likelihood function for
GMM’s as follows,

log ℒ(𝜃) =
𝑛

∑
𝑖=1

log [
𝐾

∑
𝑘=1

𝜋𝑘 ∗ 1√
2𝜋𝜎𝑘

𝑒
−(x𝑖−𝜇𝑘)2

2𝜎2
𝑘 ]

By introducing parameters {𝜆𝑖
1, 𝜆𝑖

2, … , 𝜆𝑖
𝑘} for data point x𝑖 such that

∀𝑖, 𝑘
𝐾

∑
𝑘=1

𝜆𝑖
𝑘 = 1; 0 ≤ 𝜆𝑖

𝑘 ≤ 1, we obtain:

log ℒ(𝜃) =
𝑛

∑
𝑖=1

log [
𝐾

∑
𝑘=1

𝜆𝑖
𝑘 (𝜋𝑘 ∗ 1

𝜆𝑖
𝑘
√

2𝜋𝜎𝑘
𝑒

−(x𝑖−𝜇𝑘)2
2𝜎2

𝑘 )]

Using Jensen’s Inequality, we get:

log ℒ(𝜃) ≥ modified_logℒ(𝜃)

∴modified_logℒ(𝜃) =
𝑛

∑
𝑖=1

𝐾
∑
𝑖=𝑘

𝜆𝑖
𝑘 log (𝜋𝑘 ∗ 1

𝜆𝑖
𝑘
√

2𝜋𝜎𝑘
𝑒

−(x𝑖−𝜇𝑘)2
2𝜎2

𝑘 ) (1)

Note that the modified-log likelihood function gives a lower bound for the true
log likelihood function at 𝜃. Finally, to get the parameters, we do the following:

• To get 𝜃: Fix 𝜆 and maximize over 𝜃.

max
𝜃

𝑛
∑
𝑖=1

𝐾
∑
𝑖=𝑘

𝜆𝑖
𝑘 log (𝜋𝑘 ∗ 1

𝜆𝑖
𝑘
√

2𝜋𝜎𝑘
𝑒

−(x𝑖−𝜇𝑘)2
2𝜎2

𝑘 )

Differentiate w.r.t. 𝜇, 𝜎2, and 𝜋 to get the following

𝜇̂MML
𝑘 =

𝑛
∑
𝑖=1

𝜆𝑖
𝑘x𝑖

𝑛
∑
𝑖=1

𝜆𝑖
𝑘

𝜎̂2MML

𝑘 =

𝑛
∑
𝑖=1

𝜆𝑖
𝑘(x𝑖 − 𝜇̂MML

𝑘 )2

𝑛
∑
𝑖=1

𝜆𝑖
𝑘

̂𝜋MML
𝑘 =

𝑛
∑
𝑖=1

𝜆𝑖
𝑘

𝑛
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• To get 𝜆: Fix 𝜃 and maximize over 𝜆. For any 𝑖:

max
𝜆𝑖

1,𝜆𝑖
2,…,𝜆𝑖

𝑘

𝐾
∑
𝑘=1

[𝜆𝑖
𝑘 log (𝜋𝑘 ∗ 1√

2𝜋𝜎𝑘
𝑒

−(x𝑖−𝜇𝑘)2
2𝜎2

𝑘 ) − 𝜆𝑖
𝑘 log(𝜆𝑖

𝑘)] 𝑠.𝑡.
𝐾

∑
𝑘=1

𝜆𝑖
𝑘 = 1; 0 ≤ 𝜆𝑖

𝑘 ≤ 1

Solving the above constrained optimization problem analytically, we get:

𝜆̂𝑖MML

𝑘 =
( 1√

2𝜋𝜎𝑘
𝑒

−(x𝑖−𝜇𝑘)2
2𝜎2

𝑘 ) ∗ 𝜋𝑘

𝐾
∑
𝑘=1

( 1√
2𝜋𝜎𝑘

𝑒
−(x𝑖−𝜇𝑘)2

2𝜎2
𝑘 ) ∗ 𝜋𝑘

EM Algorithm
The EM (Expectation-Maximization) algorithm is a popular method for esti-
mating the parameters of statistical models with incomplete data by iteratively
alternating between expectation and maximization steps until convergence to a
stable solution.

The algorithm is as follows:

• Initialize 𝜃0 =
⎧{
⎨{⎩

𝜇1, 𝜇2, … , 𝜇𝐾
𝜎2

1, 𝜎2
2, … , 𝜎2

𝐾
𝜋1, 𝜋2, … , 𝜋𝐾

⎫}
⎬}⎭

using Lloyd’s algorithm.

• Until convergence (||𝜃𝑡+1 − 𝜃𝑡|| ≤ 𝜖 where 𝜖 is the tolerance parameter) do
the following:

𝜆𝑡+1 = arg max
𝜆

modified_log(𝜃𝑡, 𝜆) → Expectation Step

𝜃𝑡+1 = arg max
𝜃

modified_log(𝜃, 𝜆𝑡+1) → Maximization Step

EM algorithm produces soft clustering. For hard clustering using EM, a further
step is involved:

• For a point x𝑖, assign it to a cluster using the following equation:

𝑧𝑖 = arg max
𝑘

𝜆𝑖
𝑘
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