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Abstract

The week’s discourse concentrates on the two primary challenges in-
herent in Principal Component Analysis (PCA) and endeavors to provide
solutions. The solutions are achieved through the utilization of kernel
functions and culminates in a more comprehensive and generalized algo-
rithm for PCA.

Introduction
In the context of a given dataset X ∈ ℝ𝑑×𝑛, where C ∈ ℝ𝑑×𝑑 represents the
covariance matrix, Principal Component Analysis (PCA) encounters two critical
challenges:

1. Time Complexity: Computing the eigenvalues and eigenvectors of C
requires an algorithmic complexity of 𝑂(𝑑3). Consequently, as the dimen-
sionality 𝑑 increases, the computational time becomes prohibitively large.

2. Non-Linear Dataset: In situations where the dataset resides in a non-
linear subspace, PCA’s attempt to derive linear combinations of Principal
Components may yield suboptimal results.

To address these issues, we propose methods for reducing the time complexity
of finding eigenvalues and eigenvectors and for handling non-linear relationships
in PCA.
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Reducing the Time Complexity to Find Eigenval-
ues and Eigenvectors
Let us consider a dataset X with a large number of features (𝑑), denoted as
[𝑑 >> 𝑛], where:

• 𝑑: number of features
• 𝑛: number of datapoints

The dataset X is represented as follows:

X = ⎡⎢
⎣

| | | |
x1 x2 x3 … x𝑛
| | | |

⎤⎥
⎦

X ∈ ℝ𝑑×𝑛

The covariance matrix C of X is given by:

C = 1
𝑛(XX𝑇 ) where C ∈ ℝ𝑑×𝑑 … [1]

Let w𝑘 be the eigenvector corresponding to the 𝑘-th largest eigenvalue 𝜆𝑘 of C.
We know:

Cw𝑘 = 𝜆𝑘w𝑘

Substituting C from equation [1] into the above equation and solving for w𝑘,
we obtain:

w𝑘 =
𝑛

∑
𝑖=1

(x𝑇
𝑖 w𝑘
𝑛𝜆𝑘

) ⋅ x𝑖

Thus, w𝑘 is a linear combination of the datapoints. Consequently, we can
express:

w𝑘 = X𝛼𝑘 for some 𝛼𝑘 … [2]

Let X𝑇 X = K, where K ∈ ℝ𝑛×𝑛. We can utilize this to solve for 𝛼𝑘. After
some algebra (refer to relevant literature), we obtain:

K𝛼𝑘 = (𝑛𝜆𝑘)𝛼𝑘

According to the Spectral Theorem, the non-zero eigenvalues of XX𝑇 and X𝑇 X
are identical. Therefore, we can assert that if 𝜆 ≠ 0 is an eigenvalue of XX𝑇

with eigenvector w, then XX𝑇 w = 𝜆w. By multiplying both sides by X𝑇 ,
we find X𝑇 X(X𝑇 w) = 𝜆X𝑇 w, which confirms that 𝜆 is also an eigenvalue for
X𝑇 X, with the corresponding eigenvector being X𝑇 w.

Let 𝛽𝑘 be the eigenvector corresponding to the 𝑘-th largest eigenvalue 𝑛𝜆𝑘 of
K. Solving the eigen equation for K yields:

𝛼𝑘 = 𝛽𝑘
√𝑛𝜆𝑘

… [3]

By employing equations [2] and [3], we can compute the eigenvalues and eigen-
vectors of C using K, effectively reducing the time complexity from 𝑂(𝑑3) to
𝑂(𝑛3).
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Finding PCA for Non-Linear Relationships
Transforming Features
To address non-linear relationships, we propose mapping the dataset to higher
dimensions as follows:

x → 𝜙(x) ℝ𝑑 → ℝ𝐷 where [𝐷 >> 𝑑]

To compute 𝐷, let x = [ 𝑓1 𝑓2 ] represent features of a dataset containing
datapoints lying on a second-degree curve in a two-dimensional space.

To convert it from quadratic to linear, we map the features to:

𝜙(x) = [ 1 𝑓2
1 𝑓2

2 𝑓1𝑓2 𝑓1 𝑓2 ]

Mapping 𝑑 features to the polynomial power 𝑝 results in 𝑑+𝑝𝐶𝑑 new features.

However, it is essential to note that finding 𝜙(x) may be computationally de-
manding.

To overcome this issue, we present the solution in the subsequent section.

Kernel Functions
A function 𝑘 ∶ ℝ𝑑 × ℝ𝑑 → ℝ is considered a “valid” Kernel Function if it maps
data points to the real numbers.

Proof of a “Valid” Kernel: There are two methods to establish the validity
of a kernel:

1. Method 1: Explicitly exhibit the mapping to 𝜙, which may be challenging
in certain cases.

2. Method 2: Utilize Mercer’s Theorem, which states that 𝑘 ∶ ℝ𝑑 × ℝ𝑑 → ℝ
is a valid kernel if and only if:

• 𝑘 is symmetric, i.e., 𝑘(x, x′) = 𝑘(x′, x)
• For any dataset {x1, x2, … , x𝑛}, the matrix K ∈ ℝ𝑛×𝑛, where K𝑖𝑗 =

𝑘(x𝑖, x𝑗), is Positive Semi-Definite.

Two popular kernel functions are:

1. Polynomial Kernel: 𝑘(x, x′) = (x𝑇 x + 1)𝑝

2. Radial Basis Function Kernel or Gaussian Kernel: 𝑘(x, x′) =
exp (−‖x − x′‖2

2𝜎2 )
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Kernel PCA
Consider a dataset X with a large number of features (𝑑), represented as [𝑑 >>
𝑛], where:

• 𝑑: number of features
• 𝑛: number of datapoints

The dataset X is given by:

X = ⎡⎢
⎣

| | | |
x1 x2 x3 … x𝑛
| | | |

⎤⎥
⎦

To perform Kernel PCA, follow these steps:

1. Step 1: Calculate the kernel matrix K ∈ ℝ𝑛×𝑛 using a kernel function,
where K𝑖𝑗 = 𝑘(x𝑖, x𝑗).

2. Step 2: Center the kernel using the formula:

K𝐶 = K − IK − KI + IKI

where K𝐶 is the centered kernel, and I ∈ ℝ𝑛×𝑛 is a matrix with all elements
equal to 1

𝑛 .

3. Step 3: Compute the eigenvectors {𝛽1, 𝛽2, … , 𝛽𝑙} and eigenvalues
{𝑛𝜆1, 𝑛𝜆2, … , 𝑛𝜆𝑙} of K𝐶 and normalize them to obtain:

∀𝑢 𝛼𝑢 = 𝛽𝑢
√𝑛𝜆𝑢

4. Step 4: Compute the transformed data points:

𝜙(x𝑖)𝑇 w ∈ ℝ𝑑 → [
𝑛

∑
𝑗=1

𝛼1𝑗K𝐶
𝑖𝑗

𝑛
∑
𝑗=1

𝛼2𝑗K𝐶
𝑖𝑗 …

𝑛
∑
𝑗=1

𝛼𝑛𝑗K𝐶
𝑖𝑗 ]
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